
Interoperability: 
Part 1



The primary consideration in evaluating composable technologies is to ensure that the application is fit for 
purpose. Beyond ensuring the solution fulfills business requirements, the level of interoperability and 
extensibility should also match that solution's importance to the business.



For example, an organization in the consumer discretionary goods sector would consider commerce an 
"anchor" application. Because the ability to sell goods online is so critical to the business, this organization 
needs to integrate other systems around its eCommerce solution. 



These additional requirements would often include functionality like user interface extensibility and 
mature APIs. Extensible anchor solutions enable organizations to implement platform automation or 
embed interfaces from other lesser applications, providing a consistent and unified internal 
employee experience.

The  for minimizing risk and maximizing agility 
are clear. The ability to rapidly add or change technologies are key to organizations moving to meet the ever-increasing 
demands on customer experience and    
are foundational to driving interoperability between composable technologies. 



So what are the key criteria and considerations organizations need to understand when looking at 

interoperability – and how can you also work within complex environments which may include legacy  
or on-prem applications?

benefits of composable business practices and architectures

MACH principles (microservices, API-first, cloud-native SaaS, headless)

Business fit and interoperability fit

In the context of MACH, stability and longevity specifically refers to the entire composed system and 
practice around that rather than specific applications within your organization's digital estate. 



Previously, organizations would make big bets that certain key systems would be in place for years (or even 
decades). In practice we have seen that the pace of software development has meant that companies that 
overly invested in vendors are now left with architectural debt from expensive and inflexible architectures. 
The MACH principles dictate that the overall approach to composability can enable functional stability  
and longevity.



In other words, despite similar names, stability is the exact opposite of being static. An organization that 
has embraced MACH principles can swiftly adapt its systems with minimal disruption, enhancing agility, 
uptime, and reducing risk, unlike those hindered by legacy system constraints.


Stability and longevity

How to evaluate and integrate 
composable solutions 

(and what to do with non-conforming legacy systems)


/01

https://machalliance.org/mach-technology
https://machalliance.org/mach-technology


/02

One of the key advantages of buying best-of-breed software in a composable approach is that you  
no longer need to overbuy based on growth plans or vendor roadmaps. Following the principles of 
interoperability means that you can easily procure and integrate services as needed (and 
importantly, no sooner). 



No longer are you dependent on vendor promises and roadmaps to align with long-term goals. Instead 
you can granularly pick and choose from multiple vendors based on technology that actually exists today 
and integrate them appropriately. If your other vendor comes along and builds that functionality a year or 
two down the road—great! It means you can look at potentially retiring your other acquired or built tool. 
The point is that you have the choice in the matter. 



However, in order to have that choice means that your approach needs to adhere to the MACH principles
—particularly those around granular microservices and headless APIs, in order to ensure that business 
functions can be separated out to the point of your requirements.

Best-of-breed

A modern system should enable multiple ways of working. This includes the ability to configure the  
SaaS application directly according to the organization’s processes, as well as the ability to export  
these configurations.



This can enable agility between teams at the business and IT can work together to easily make changes, 
but also ensure their tasks and outputs are coordinated and backed up as part of normal operations. 
However, these enabling functions also mean that moving to other vendors or scaling across business 
units can be accelerated, as more of the application and configuration can be scripted for export and  
import functions.

no vendor lock-in

These key pillars of business fit, stability, and flexibility are all interdependent on each other.  
A modern MACH architecture is built on these principles. However, the majority of organizations  
have existing systems that were built prior to these principles being commonly documented,  
understood and implemented. 



So how can an organization ensure these two approaches  
work together?

Modern architecture



Given the longevity of some systems—especially 
those core to the business such as Enterprise 
Resource Planning (ERP)—working with older 
systems or formats is often a necessity, even in  
a mostly modern approach. 



Legacy architecture often has a few characteristics 
that were common at the time. 



These include:

/03

Older data formats

When working with legacy systems, developers 
are often dealing with older data formats that  
often lack the types of features and functions  
that are more common among modern 
composable systems.



For example, XML was once the most common 
way of doing data interchange. Because data 
interchange was often quite slow, XML had 
functions such as validation that could be used to 
ensure the correctness of payloads before they 
were sent. However, it has largely been replaced 
by JSON in many contexts. 



The reasons for this change are somewhat related 
to JSON being able to easily parse into front-end 
applications, but mostly due to XML being overly 
structured and document-centric (which is less 
useful for microservices and granular content and 
events where more and smaller payloads are the 
norm). In other words, the features that made  
XML useful at the time are now considered  
more of a burden.



Of course, this is a fairly high-level example,  
but it extends into applications, file formats, 
operating systems and even transport protocols.

 

Lack of event-based capabilities

One of the most common patterns within newer 
systems is the ability to trigger processes based 
on system events. In modern systems, these are 
most commonly implemented as webhooks which 
allow systems to communicate with each other in 
real-time. 



Many older systems or APIs lack the means to 
signal other systems - meaning common tasks 
around indexing or synchronization of changes 
often come with some custom code or additional 
systems for polling changes.

Lack of granularity

As discussed in the XML example above, it was 
appropriate at the time because often interchange 
between systems was done asynchronously (say, 
once a day) and working with a large, single 
document-based approach that could have 
validation, document hierarchies and element-
based operations made sense. 



Now that we have microservices and live eventing, 
these older (and heavier) means of data 
interchange are less suited for these applications.

Common issues with existing 

legacy architecture​

Poor performance and latency

Older systems were often designed based on 
requirements driven by hardware that was far  
less capable. As a result, data-intensive processes 
were often designed around asynchronous 
processes and large data transfers, rather than 
real-time eventing.



/04

How to approach integrating these 
systems into a modern stack

Migrate in a staged approach

The approaches between a modern microservices and event-based approach have different needs 
relative to the older means of data interchange. So how can you adapt those legacy systems into these 
modern systems?



Instead of “big bang” migrations to completely rip-and-replace applications, the MACH approach 
(particularly the “microservices” focus) enables approaches such as the “strangler pattern” or “bubble 
context” where you can start to encapsulate existing legacy functions into smaller microservices and 
enable technological change in a staged approach. 



Our MACH Alliance members have some resources on the topic�

� Commercetools has a useful high-level explanation of the strangler pattern here: 

� AWS has a highly detailed technical explanation of the approach, covering examples services and key 
patterns such as domain-driven design (DDD) and anti-corruption layer (ACL) here: 

View articl�

View article


Intermediary layers

Another approach enabled by MACH technologies are vendors such as Conscia, Netlify (Connect), Octoo, 
and Uniform, which provide a layer that can connect to underlying sources of content and data and 
expose them in a way that is more granular and event-based.



These systems can perform functions such as caching and calculation in order to specifically enable some 
digital experience scenarios such as building content experiences or personalization.



For more generic functions that may be related to back-end processing, ETL (extract, transform and load) 
tools can also be a valid approach for enabling a move to microservices. 



MACH Alliance member Talon.one has an explanation here: View article


https://commercetools.com/blog/how-to-migrate-to-composable-with-a-faster-roi-with-the-strangler-pattern
https://docs.aws.amazon.com/prescriptive-guidance/latest/cloud-design-patterns/strangler-fig.html
https://www.talon.one/glossary/etl


/05

 Summary

Going back to some of the original research around composable business practices “
” it becomes clear that composable technologies are key to 

enabling their four basic principles�

� More speed through discover�
� Greater agility through modularit�
� Better leadership through orchestration�
� Resilience through autonomy



By implementing composable techniques and technologies, organizations can adapt quicker (such as in 
the case of the pandemic and shifting delivery models or supply chains) or build differentiated customer 
experiences (mobile apps, omnichannel experiences such as click-to-collect). 



Understanding your data flows and customer journeys are an important aspect to determine the needs for 
interoperability between those systems on which your business is built. Those key “anchor” applications 
such as commerce, content or customer data may require a greater level of interoperability as you 
evaluate their place within your composable architecture.



However, it is worth noting that when evaluating interoperability on the above criteria you often need to get 
into the details of how composability and interoperability is enabled to ensure it meets your functional 
goals. Just because software “has an API”, 

.



That said, the majority of organizations have to work with legacy data and systems, but you don’t need to 
let that stop you from transitioning to a MACH-based approach. Rather than a traditional approach of “big 
bang” migrations which are time-consuming and often prone to failure, a staged approach with carving off 
smaller business functions will encourage a cycle of bigger wins and learnings over time.


Gartner Keynote: 
The Future of Business Is Composable

does not mean it will be granular or performant enough, 
or cover all your application management needs

https://www.gartner.ca/en/articles/gartner-keynote-the-future-of-business-is-composable
https://www.gartner.ca/en/articles/gartner-keynote-the-future-of-business-is-composable
https://machalliance.org/insights/four-things-digital-leaders-really-need-to-know
https://machalliance.org/insights/four-things-digital-leaders-really-need-to-know


/06

Understand the business

Understand the vision of the business. Who are our customers? How do we want them to experience our platform? Who are our 
current ecosystem partners and what business capabilities do we want to provide?


Align the vision

With the current and future architecture in mind, what are the headlines of a strategic architecture. What are the 
metrics that best describe the current architecture and what would be the main beacons of a target architecture.


Who are our 
ecosystem partners

What business 
capabilities will 

we require?

Who is our customer?

What customer experience  
do we want to deliver?

What initiatives are in flight 
and are they in all areas?

Who are our ecosystem 

partners?

Summary of the strategy

Top 5-7 Metrics Describing  
the Initial State

Target objectives

time analysis

Appendix

Summarize your strategy in a concise statement that captures the essence of the re-architecture goals

We have a reliance 
on internally built 
software

Enable business 
composability,  
speed up time  
to market

What objectives  
would show the  
target architecture 
adoption has been 
successful?

Our content 

takes x weeks  
to be translated



/07

Identify and classify the components in the estate

An enterprise is made up of a variety of components that all work in unison to allow the business to operate. Identify all the 
components in the system and classify them into various macro domains.


digital experience composition & frontend

data orchestration layer

Delivery API, CDN, API gateway, WAF, BFF, APIs directly from systems (depending on orchestration strategy and scale) 

data integration layer

iPaaS, Enterprise Service Bus, or Event broker/Message queue, ETL Middleware (depending on integration strategy and legacy)

Websites STOREFRONT self service pos or app marketplace

CMS COMMERCE SEARCH LOYALTY CDP

DAM PAYMENT RECOMMENDATION MARKETING IAM

experience mgmt quoting promotion campaigns customer service

pim erp oms crm bi

cpq engine finance wms fsm dwh

plm qms tms lms dwh

content commerce success customers

delivery and scale

time analysis



Execute the TIME Analysis

The goal of the TIME assessment is to identify and prioritize the most significant opportunities to improve the portfolio. 

The applications are evaluated to see how fit for purpose they are. Deficient applications may suffer from poor business 
fitness, technical fitness or both. Poor fitness is a risk to the business, and needs to be remediated.



Tolerate — the application is in good technical shape but 
lacking in business support, so IT would tolerate it in the 
portfolio until such time as the business wanted to invest 
in improving its business fitness.



Invest — the application is in good shape, so you should 
invest in it when asked to add features or turn on some 
new functionality of a packaged application, while also 
keeping it technically healthy.



?

!

highlow

h
ig

h
l

o
w

Business Value

Te
ch

ni
ca

l Q
ua

lit
y

Re-evaluate/

Reposition asset


(tolerate or invest)

Maintain/

Evolve asset

(integrate)

Retire/

Consolidate asset


(eliminate)

Re-engineer/

Modernize asset


(migrate or invest)

time analysis

/08

Migrate (or Modernize) — The application does just what 
the business wants, but IT is concerned with the age and 
brittleness of the underlying technology. If the business 
wants functional improvements, IT should try to address this 
technical debt simultaneously by migrating the technical 
stack or the packaged application to current, supported 
technology.



Eliminate (or Replace) — These applications may be in 
such bad shape it is not worth spending on them. If they are 
not needed, or the functionality is now available in a better 
application, they could be eliminated. If the functionality is still 
needed, they might need to be replaced.



Application value and fit to the mission,  
mandate or process neede�

� Mission or process fi�
� Data and information quality/timelines�
� Application robustnes�
� Utilizatio�
� Future role of the organization

Operational ris�

� Complexit�
� Reliance on subject matter expert�
� Maintenance change factor�
� Supportabilit�
� Availability and cost of support skills

Technical ris�

� Architectural alignment or compatibilit�
� Base technology qualit�
� Extendibility and scalabilit�
� Technical execution

Cost�

� License and support contrac�
� Service maintenance and enhancement�
� Total application life cycle costs

Credits

/09

This whitepaper was developed by the MACH Alliance 

Interoperability Task Force:

Adam Peter Nielsen


Chris Bach 

Daniele Stroppa


Dom Selvon 

Filip Rakowski

Mark Demeny 

Melanie Richards 

Roberto Carrera 

Subhasri Vadyar

Considerations

info@machalliance.org  
www.machalliance.org


Stay updated with the latest news and content from the MACH Alliance.

Sign up for our newsletter here

https://www.linkedin.com/in/adampeternielsen/
https://www.linkedin.com/in/christianbachdk/
https://www.linkedin.com/in/danielestroppa/
https://www.linkedin.com/in/dom-selvon-1488958/
https://www.linkedin.com/in/filip-rakowski-a43671129/
https://www.linkedin.com/in/mdemeny/
https://www.linkedin.com/in/richardsmelanie/
https://www.linkedin.com/in/robertocarreramaldonado/
https://www.linkedin.com/in/subhasri-vadyar/
http://www.machalliance.org/
https://register.machalliance.org/newslettersignup?
https://www.linkedin.com/company/machalliance/
https://www.linkedin.com/company/machalliance/
https://twitter.com/MACHAlliance
https://twitter.com/MACHAlliance

	P1_v2
	P2_v2
	P3_v2
	P4_v4
	P5a_v3
	P5b_v3
	P6_v2
	P7_v2
	P8_v2-1



